Group-A:

1. Answer the following.[5 x 1 =5]

I. There are tu	ples in finite state n	nachine.			
a) 4	b) 5	c) 6	d) unlimited		
II. According to Chomsky classification finite automata is of					
a) Type 0	b) Type 1	c) Type 2	d) Type 3		
III. Minimum number of states require to accept string ends with 10.					
a) 3	b) 2	c) 1	d)None of these		
IV. Transition function	n maps.				
a) Σ * Q —> Σ	b) Q* Q> Σ	c) Σ * Σ> Q	d) Q* Σ —> Q		
V. Which is a True statement:					
a) Every DFA is a NFA		a) Every NFA i	a) Every NFA is a DFA		

Group-B

Answer any two. [2 x 5= 10]

2.Construct a FA, where number of 0's and number of 1's divisible by 3 over alphabet set Σ = {0,1}.

3. Construct a FA, where every string end with 'ab' over alphabet set $\Sigma = \{a, b\}$.

4. Construct a FA, where every string contain three consecutive 1's over alphabet set $\Sigma = \{0,1\}$.

Group-C

Answer any one. [1 x15= 15]

5. a) Construct a DFA, for the following NFA.

7

4+4=8

8

b) Write the Regular Expressions for the following.

Containing even number of 0's i.

Set of all words with at least two b's over the alphabet set {a, b}. ii.

6. a) Minimize the DFA given in the following table

Q/S	0	1
$\frac{Q/\Sigma}{\rightarrow Q_0}$	Q1	Q ₂
Q 1	\mathbf{Q}_2	Q ₃
Q ₂	\mathbf{Q}_2	Q 4
* Q 3	Q 3	Q ₃
*Q4 *Q5	Q 4	Q 4
* Q 5	Q 5	Q 4

b) Construct a FA, that accepts all strings over{0, 1} having even number of 1's and each 1 is followed by at least one 0. 7

Siliguri Institute of Technology Department of CSE /Internal Exam I Year 2020 Formal Language and Automata Theory PCC- CS403 Full Marks: 30 Time: 60Mins

Group-A:

1. Answer the following.[5 x 1 =5]

I. There are tu	ples in finite state r	nachine.			
a) 4	b) 5	c) 6	d) unlimited		
II. According to Chomsky classification finite automata is of					
a) Type 0	b) Type 1	c) Type 2	d) Type 3		
III. Minimum number of states require to accept string ends with 10.					
a) 3	b) 2	c) 1	d)None of these		
IV. Transition function	n maps.				
a) Σ * Q —> Σ	b) Q* Q —> Σ	c) Σ * Σ> Q	d) Q* Σ —> Q		
V. Which is a True statement:					
a) Every DFA is a NFA		a) Every NFA is a DFA			

Group-B

Answer any two. [2 x 5= 10]

2.Construct a FA, where number of 0's and number of 1's divisible by 3 over alphabet set $\Sigma =$ $\{0,1\}.$

3. Construct a FA, where every string end with 'ab' over alphabet set $\Sigma = \{a, b\}$.

4. Construct a FA, where every string contain three consecutive 1's over alphabet set $\Sigma = \{0,1\}$.

Group-C

Answer any one. [1 x15= 15] 5. a) Construct a DFA, for the following NFA.

7

b) Write the Regular Expressions for the following.

iii. Containing even number of 0's

Set of all words with at least two b's over the alphabet set {a, b}. iv. 6. a) Minimize the DFA given in the following table

8

4+4=8

Q/S	0	1
$\rightarrow Q_0$	Q1	\mathbf{Q}_2
Q ₁	Q_2	Q ₃
Q ₂	Q_2	Q 4
* Q 3	Q 3	Q 3
*Q4	Q 4	Q 4
*Q5	Q 5	Q4

b) Construct a FA, that accepts all strings over{0, 1} having even number of 1's and each 1 is followed by at least one 0. 7