Siliguri Institute of Technology
 Department of CSE /Internal Exam I Year 2020 Formal Language and Automata Theory PCC- CS403
 Full Marks: 30
 Time: 60Mins

 Group-A:

 Group-A:}

1. Answer the following.[$5 \times 1=5$]
I. There are \qquad tuples in finite state machine.
a) 4
c) 6
d) unlimited
According to Chomsky classification finite automata is of
a) Type 0
b) Type 1
c) Type 2
d) Type 3
III. Minimum number of states require to accept string ends with 10 .
a) 3
b) 2
c) 1
d) None of these
IV. Transition function maps.
a) $\Sigma^{*} Q \longrightarrow \Sigma$
b) $Q^{*} Q \longrightarrow \Sigma$
c) $\Sigma * \Sigma \longrightarrow Q$
d) $Q^{*} \Sigma \longrightarrow Q$

V . Which is a True statement:
a) Every DFA is a NFA
a) Every NFA is a DFA

Group-B

Answer any two. [2 x 5=10]

2.Construct a FA, where number of 0 's and number of 1 's divisible by 3 over alphabet set $\sum=$ \{0,1\}.
3. Construct a FA, where every string end with 'ab' over alphabet set $\sum=\{a, b\}$.
4. Construct a FA, where every string contain three consecutive 1 's over alphabet set $\sum=\{0,1\}$.

Answer any one. [1 x15= 15]
5. a) Construct a DFA, for the following NFA.

Group-C

b) Write the Regular Expressions for the following.
$4+4=8$
i. Containing even number of 0's
ii. Set of all words with at least two b's over the alphabet set $\{a, b\}$.
6. a) Minimize the DFA given in the following table

\mathbf{Q} / Σ	$\mathbf{0}$	$\mathbf{1}$
$\rightarrow \mathbf{Q}_{\mathbf{0}}$	\mathbf{Q}_{1}	$\mathbf{Q}_{\mathbf{2}}$
\mathbf{Q}_{1}	$\mathbf{Q}_{\mathbf{2}}$	\mathbf{Q}_{3}
$\mathbf{Q}_{\mathbf{2}}$	\mathbf{Q}_{2}	\mathbf{Q}_{4}
${ }^{*} \mathbf{Q}_{3}$	\mathbf{Q}_{3}	\mathbf{Q}_{3}
${ }^{*} \mathbf{Q}_{4}$	\mathbf{Q}_{4}	\mathbf{Q}_{4}
${ }^{*} \mathbf{Q}_{\mathbf{5}}$	$\mathbf{Q}_{\mathbf{5}}$	\mathbf{Q}_{4}

b) Construct a FA, that accepts all strings over $\{0,1\}$ having even number of 1 's and each 1 is followed by at least one 0 .

Siliguri Institute of Technology

Department of CSE /Internal Exam I Year 2020 Formal Language and Automata Theory PCC- CS403

Full Marks: 30

Time: 60Mins

Group-A:

1. Answer the following.[$5 \times 1=5$]
I. There are \qquad tuples in finite state machine.
a) 4
b) 5
c) 6
II. According to Chomsky classification finite automata is of
a) Type 0
b) Type 1
c) Type 2
d) unlimited
III. Minimum number of states require to accept string ends with 10 .
a) 3
b) 2
c) 1
d)None of these
IV. Transition function maps.
a) $\Sigma^{*} Q \longrightarrow \Sigma$
b) $\mathrm{Q}^{*} \mathrm{Q} \longrightarrow \Sigma$
c) $\Sigma^{*} \Sigma \longrightarrow Q$
d) $Q^{*} \Sigma \longrightarrow Q$

V . Which is a True statement:
a) Every NFA is a DFA

Group-B

Answer any two. [2 x 5= 10]

2. Construct a FA, where number of 0's and number of 1's divisible by 3 over alphabet set $\sum=$ $\{0,1\}$.
3. Construct a FA, where every string end with 'ab' over alphabet set $\sum=\{\mathrm{a}, \mathrm{b}\}$.
4. Construct a FA, where every string contain three consecutive 1 's over alphabet set $\sum=\{0,1\}$.

Group-C

Answer any one. [1 x15=15]

5. a) Construct a DFA, for the following NFA.

b) Write the Regular Expressions for the following.
$4+4=8$
iii. Containing even number of 0 's
iv. Set of all words with at least two b's over the alphabet set $\{a, b\}$.
6. a) Minimize the DFA given in the following table

8

$\mathbf{Q} / \mathbf{\Sigma}$	$\mathbf{0}$	$\mathbf{1}$
$\rightarrow \mathbf{Q}_{\mathbf{0}}$	\mathbf{Q}_{1}	$\mathbf{Q}_{\mathbf{2}}$
\mathbf{Q}_{1}	$\mathbf{Q}_{\mathbf{2}}$	\mathbf{Q}_{3}
$\mathbf{Q}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{2}}$	\mathbf{Q}_{4}
${ }^{*} \mathbf{Q}_{3}$	\mathbf{Q}_{3}	\mathbf{Q}_{3}
${ }^{*} \mathbf{Q}_{4}$	\mathbf{Q}_{4}	\mathbf{Q}_{4}
${ }^{*} \mathbf{Q}_{\mathbf{5}}$	$\mathbf{Q}_{\mathbf{5}}$	\mathbf{Q}_{4}

b) Construct a FA, that accepts all strings over $\{0,1\}$ having even number of 1 's and each 1 is followed by at least one 0 .

